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A Cartesian grid method with solution-adaptive anisotropic refinement and coars-
ening is developed for simulating time-dependent incompressible flows. The Carte-
sian grid cells and faces are managed using an unstructured data approach, and al-
gorithms are described for the time-accurate transient anisotropic refinement and
coarsening of the cells. The governing equations are discretized using a collo-
cated, cell-centered arrangement of velocity and pressure, and advanced in time
using the fractional step method. Significant savings in the memory requirement
of the method can be realized by advancing the velocity field using a novel ap-
proximate factorization technique, although an iterative technique is also presented.
The pressure Poisson equation is solved using additive correction multigrid, and
an efficient coarse grid selection algorithm is presented. Finally, the Cartesian cell
geometry allows the development of relatively simple analytic expressions for the
optimal cell dimensions based on limiting the velocity interpolation error. The over-
all method is validated by solving several benchmark flows, including the 2D and
3D lid-driven cavity flows, and the 2D flow around a circular cylinder. In this lat-
ter case, an immersed boundary method is used to handle the embedded cylinder
boundary. @ 2002 Elsevier Science (USA)
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1. INTRODUCTION

Cartesian grid methods with local refinement have been in the literature for a number of
years. Their main advantages are in the simplification of the grid generation process and
the ease with which local refinement of the grid can be accomplished through recursive
cell-splitting operations. These methods have enjoyed the majority of their success when
applied to the Euler equations, where they are commonly combined with an interpolation
or cut-cell technique to handle embedded boundaries and compute the inviscid flow around
complex geometrical configurations [1-3].

469
0021-9991/02 $35.00

(© 2002 Elsevier Science (USA)
All rights reserved.



470 HAM, LIEN, AND STRONG

The extension of Cartesian grid methods with local refinement to the solution of viscous
flow problems has been limited mainly by the resolution requirements imposed by viscous
boundary layers, where highly anisotropic meshes aligned with the flow direction are most
appropriate. Some authors have proposed using a hybrid of highly anisotropic body-fitted
grids in the regions close to embedded bodies and Cartesian grids elsewhere [4], although
this approach gives up much of the simplicity and elegance of the Cartesian grid method.
A partial solution to the viscous boundary layer problem is the introduction of anisotropic
refinement of the Cartesian cells. Courier has already experimented with this technique
in the context of viscous flows, although found that the resulting meshes were sometimes
too irregular to compute an accurate solution [5]. As Berger and Aftosmis correctly point
out [6], the asymptotic limit of anisotropic refinement of Cartesian cells is not sufficient to
produce boundary-layer zoning. When the direction of anisotropy is not aligned with one of
the principal coordinate directions, the boundary layer resolution requirements may lead to
a nearly isotropic refinement, reducing or completely canceling any savings related to the
anisotropic refinement capabilities. In general, however, most boundaries and their associ-
ated boundary layers will be at least partially aligned with one of the principal coordinate
directions, and even slightly anisotropic Cartesian cells have the potential to significantly
reduce the number of unknowns, particularly in three dimensions.

The development of a Cartesian grid method with local anisotropic refinement (and
coarsening) suitable for time-dependent viscous flow computations is the subject of the
present contribution. The remainder of the paper is organized as follows. In Section 2, the
Cartesian grid data structure is described. The present method adopts an unstructured data
approach to manage the Cartesian cells and faces. Section 2 also presents algorithms for
the anisotropic refinement and coarsening of the Cartesian cells. In Section 3 the numerical
method is presented. The method uses a second-order finite volume discretization and a
collocated cell-centered arrangement of variables. The fractional step technique [7, 8] is
used to decouple the time advancement of the velocity field from the pressure. We show how
the approximate factorization technique common to structured grid methods can be applied
to the present Cartesian grids to advance the velocity field directly and yield substantial
memory savings. The pressure equation is solved using additive correction multigrid, and
a simple multigrid coarsening algorithm is presented. In Section 4, a solution-based grid
adaptation criterion is developed. The regular geometry of the Cartesian cell allows the
derivation of relatively simple analytic expressions for the optimal cell dimensions based
on limiting the velocity interpolation error. In Section 5 the overall method is validated by
solving several benchmark flows, including the 2D and 3D lid-driven cavity flows, and the
2D flow around a circular cylinder. In this latter case, an immersed boundary method is
used to handle the embedded cylinder boundary. The paper is summarized in Section 6.

2. THE ADAPTIVE CARTESIAN GRID

Lohner [9] proposes three main ingredients for any adaptive refinement scheme:

1. an error indicator,
2. an optimal mesh criterion, and
3. an algorithm to refine and coarsen the mesh.

In the present section we address only the third item and assume for now that the cells
requiring refinement or coarsening are known. A discussion of the first two items of this
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list, which actually identify the cells requiring refinement or coarsening, is presented in
Section 4.

For the purposes of geometric clarity, the Cartesian cell data structure and various algo-
rithms presented in this section are developed for two dimensions. In all cases, the extension
to three dimensions is straightforward.

2.1. Data Structure
2.1.1. Rationale

The set of locally refined Cartesian cells and their associated data and neighbour con-
nections are commonly managed in one of two ways: either a hierarchical parent—child tree
structure or a completely unstructured approach. Coirier and Powell use the hierarchical
tree structure in their Euler and Navier—Stokes solvers [1, 5], demonstrating that the tree
structure provides a logical means of finding cell-to-cell connectivity and allows straight-
forward isotropic refinement and coarsening through tree growth and pruning. The research
behind NASA’s Cart3D inviscid flow project is also based on this hierarchical approach
[3, 6, 10]. A fully unstructured data approach is more common when local refinement is
used in the context of body-fitted structured grids. For example, see [11] for a general
discussion or Seidl er al. [12] for a specific example.

The main argument against the fully unstructured approach is that of increased mem-
ory requirement—the fully unstructured approach requires that each cell store an array of
references/pointers to its immediate neighbours. The cost of storing these neighbour refer-
ences may be three or more times the memory overhead associated with a tree structure.
Because both methods still have to store unknowns, geometrical information, and perhaps
coefficients, the difference in terms of the total memory requirement may be much less
substantial. Further, even though the tree traverses required to determine neighbour con-
nectivity are based on logical recursive routines, the calculation time required for computing
quantities involving the neighbours (e.g., residual calculations) will be greater than for the
fully unstructured approach, where the neighbour references are explicitly stored.

Some authors have suggested [5] or demonstrated [10] that the grid hierarchical tree
structure is amenable to multigrid. While the tree structure may be useful for developing an
efficient grid coarsening strategy, the actual memory overhead associated with the multigrid
implementation will be about the same in both cases.

Finally, we point out that the solution of viscous incompressible flows requires that careful
attention be paid to the velocity—pressure coupling to prevent nonphysical oscillations in the
solution. This is normally accomplished by using variants of either the staggered grid method
of Harlow and Welch [13] or the collocated method of Rhie and Chow [14]. In either case,
the calculation and storage of face-based data are required. The storage and management
of faces between cell neighbours would seem better suited to the fully unstructured data
approach. Based on this reasoning, the present method uses a fully unstructured approach
to manage the cell and face data.

2.1.2. Description

Consider the rectangular domain shown in Fig. 1a with dimensions L, by L, and south-
west corner at (xp, yp). The domain is initially covered by a single Cartesian cell, which
we identify using the standard structured grid indexing as cell (i, j) = (0, 0). The cell is
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FIG. 1. Cartesian cell indices (i, j) and [/;, ;] for (a) the initial mesh of one cell, (b) the mesh after one
anisotropic refinement in the x-direction, and (c) the mesh after several anisotropic refinements.

also identified by a second set of indices that define its level of refinement in each of the
coordinate directions—in this case [/;, [;] = [0, 0], where level zero represents the coarsest
possible cell. Square brackets are used to distinguish between the two indices. Because the
cells are managed using a fully unstructured approach, each cell must explicitly store its
own (i, j) and [/;, [;] indices.

Most Cartesian cell methods starts from this initial discretization of the domain and then
perform a few isotropic refinements to produce a suitably refined initial mesh. The present
method proceeds in a similar manner; however, only anisotropic refinements are allowed.
This approach does not preclude isotropic refinement, which can of course be achieved
by two successive anisotropic refinements in two different directions. Figure 1b shows the
domain after a single anisotropic refinement in the x-direction. In this case, the refinement
level in the x-direction has been increased in both cells to /; = 1. The (i, j) indices of each
cell store the standard structured grid indices as if the entire grid were at the refinement level
of the cell. Figure 1c shows the mesh and associated indices after a few more anisotropic
refinements have been performed.

Using the stored index information, the centroid (x., y.) and dimensions (Ax, Ay) of
each cell can be calculated as follows:

. Lx . Ly
(Xc, ye) = xo+(l+1/2)E,yo+(J+1/2)E ey
L. L,
(Ax, Ay) = 5ol ) @)

Because the integer powers of 2 in the above equations can be computed very efficiently,
each cell’s geometric data can be calculated on an as-needed basis, resulting in memory
savings and guaranteeing consistency between geometric data and index information.

2.2. Mesh Refinement and Coarsening

By treating the cells in a fully unstructured manner and making anisotropic refinement
and coarsening the norm, the complexities of introducing cell anisotropy into an isotropic
hierarchical tree data structure are avoided. Unstructured treatment of the cells also allows
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for the anisotropic coarsening of the mesh in a different direction than the inverse of the
most recent refinement.

In the refinement and coarsening routines of the present work, the only restriction imposed
is that no cell can have more than two neighbours in any one direction (or four neighbours in
three dimensions). This is equivalent to saying that the absolute difference in y-refinement
level, [;, between two cells that are east/west neighbours (i.e., share a face for which
the normal has only an x-component) must be less than or equal to 1. For north/south
neighbours, the absolute difference in x-refinement level, /;, must be less than or equal to 1.
No limit is imposed on the difference in x-refinement level between east/west neighbours
or the difference in y-refinement level between north/south neighbours. Although these
additional restrictions would result in a smoother mesh, this was not found to be necessary.

The procedure for refining a cell in the x-direction is given below as refineX. The
procedure returns the boolean value TRUE upon successful refinement of the cell; otherwise
it returns FALSE.

boolean refineX (Cell ¢)
1. Make sure we are OK to x-refine
if (c is set to be x-coarsened) OR (c has already been x-refined)
return FALSE
end if
2. Try to refine any neighbours that are preventing our own refinement
for each north/south Cell neighbour ¢,
if (l; p ==1; — 1) AND (refineX(c,,) == FALSE)
return FALSE
end if
end for
3. ¢ becomes the refined cell to the west. Its indices are modified as follows:
L=L+1,i=2i
4. Add anew cell, ce, to the east. Its indices are set as follows:
li,new =i, lpew =1 + 1
lj,new = lj’ jnew = J
5. Modify neighbour connectivity, add/modify faces, interpolate cell and

face data

6. Mark Cells ¢ and cpe,, as x-refined, and return
return TRUE

end refineX

A similar refinement routine is required for the y-direction. The details of modifying the
neighbour connectivity and adding new faces are tedious but not complex. The conservative
interpolation of the cell and face data will be addressed in the following section on the
numerical method.

The anisotropic coarsening procedure in the x-direction is now given as coarsenX. Coars-
ening requires slightly more checking to identify a neighbour that can be combined with
the cell in question to produce a valid coarse cell. This checking is performed as part of
step 2 using the integer division (i /2 == i,;,/2). Integer division rounds down when there
is a remainder. For example, the two cells shown in Fig. 1b have i =0 and i =1, re-
spectively. Using integer division, both cells have i /2 = 0 and thus form a valid pair for
coarsening.
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boolean coarsenX (Cell ¢)
1. Make sure we are OK to x-coarsen
if (c is set to be x-refined) OR (c has already been x-coarsened)
return FALSE
end if
Cycle through our neighbours to find a cell we can x-coarsen with
for each east/west Cell neighbour ¢,
if (/2 == i,»/2) AND (¢, can be coarsened) AND
(i ==l np) AND (I; == 1 np)
3. Make sure none of the north/south neighbours of either c or
cqup prevent the coarsening
if all north/south neighbours, ¢, /s, have (; n/s <=1;)

N

4. Cell ¢ becomes the coarse cell, ¢y, is deleted
L=L—-1,i=1i/2

5. Modify neighbour connectivity, remove/modify faces,
interpolate cell and face data

6. Mark Cell ¢ as x-coarsened, and return
return TRUE

end if
end if
end for
return FALSE

end coarsenX

Note that, unlike the refinement routine, the coarsening routine is not called recursively to
try and modify north/south neighbours that may be preventing the coarsening from going
ahead (because of the maximum neighbour rule). This difference was found to reduce the
tendency of certain parts of the mesh to oscillate between coarsening and refinement, with
a bias toward refinement.

A similar coarsening routine is required for the y-direction. As with refinement, interpo-
lation of the cell and face data will be addressed in the following section on the numerical
method.

3. NUMERICAL METHOD

The numerical method of the present contribution uses a collocated treatment of variables,
with all unknowns stored at the Cartesian cell centroids. The governing Navier—Stokes
equations for unsteady incompressible flow are discretized using the finite-volume method
with second-order, linearly exact discretizations for all fluxes. Time advancement uses
the fractional step method, which decouples the solution of the velocity field from the
pressure. In each time step, the velocity field is first advanced, followed by the solution of
a pressure Poisson equation to enforce continuity. The overall algorithm is based on the
method of Kim and Choi for unstructured grids [8], although we make modifications to
the flux discretizations they propose that make use of the simplifications engendered by
the Cartesian cell mesh and allow the use of approximate factorization to advance the
velocity field.
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3.1. Viscous Flux Discretization

As pointed out by Coirier and Powell [5], a major limitation of Cartesian cell methods
is that the viscous flux discretization can have detrimental effects on both the accuracy
and convergence in regions where the mesh is not smooth. Inaccuracy occurs when the dis-
cretization is not linearity preserving, and convergence problems are related to nonpositivity
of the reconstruction. To minimize these problems, Coirier and Powell used a “diamond
path scheme”—basically a divergence-theorem-based reconstruction where the integration
path in two dimensions forms a diamond about the face in question. Even with this scheme,
nonpositivity can still lead to convergence problems. Other authors have recently proposed
modifications to the diamond path to reduce these problems [4].

In our opinion, the linearly exact interpolations required by the diamond path scheme
render it computationally costly and difficult to implement, particularly in three dimensions.
In addition, the scheme does not make use of the underlying Cartesian geometry to simplify
the reconstruction. For these reasons, the present work considers two other viscous flux
discretizations. The first is the fully unstructured viscous flux discretization proposed by
Zwart et al. [15]. The second is developed from the “auxiliary node” concept of Ferziger
and Peric [11] for unstructured grids. Both discretizations are second-order accurate and
linearly exact. Both schemes also require the velocity gradients at the cell centroids. In the
present work, these gradients are calculated using a least-squares reconstruction.

The details of the two diffusive flux discretizations are now presented. Consider the
east/west cell neighbours and their shared face shown in Fig. 2. For incompressible flow
with viscosity v, the viscous flux of x-momentum through face f with unit normal 7#i and
area Ay can be expressed

F{u) =—v(Vu-a)Ay. 3)
Using the second-order, linearly exact discretization of Zwart et al., this flux can be ap-
proximated at the face as

A A~ u _I/t ~_ A A AN A
Filw) = —v (n-s)%wbt-(n—(n-s)s)]/tf, @)

where § is the unit vector along the line joining the two cell centroids, As is the distance
between the centroids, and Vu is the average of the gradients at the cell centroids. For the
Cartesian cell geometry shown in Fig. 2, the face normal has components (7, n,) = (1, 0),
and Eq. (4) simplifies to

F ) = =0 (ug —up)Ay — v uo @sxsv Ay, (5)
! As ax 7 a9y

In Eq. (5), the flux expression has been split into two parts, the first involving the

FIG. 2. Two-dimensional cell and face schematic for the viscous flux discretization of Zwart et al. 15].
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FIG. 3. Cell and face schematic for an alternative viscous flux discretization based on the auxiliary node
concept.

cell-centered unknowns, and the second involving the cell-centered gradients. We will
refer to the first part as the active part, and the second part as the lagged part,

F}l(u) — F?,Active(u) + F?,Lugged(u)' (6)

On Cartesian grids with local grid refinement, it is common for the § and 7 vectors
to be far from aligned. Inspection of Eq. (5) shows that this will significantly reduce the
magnitude of the active part of the flux expression.

An alternative flux expression can be developed using the auxiliary node concept of
Ferziger and Peric [11]. Figure 3 shows the same pair of cells considered previously with
the auxiliary node P’ introduced at the point (xp, y). A linearly exact, second-order accu-
rate approximation for the viscous flux of x-momentum through face f for this particular
configuration is then

FO2 ) = —V<M)Af. %

Xp —Xp

Using the cell-center gradients to approximate the values at the auxiliary nodes, the flux
expression can be written more generally for an arbitrary east/west face as

du ou
- Slor—y0) — 55| p (s — yp)
uo MP)Af_va_y’Q f 0 B)‘P f Ay ®)

X — Xp (xgo —xp)

F{2u) = —v(

Once again, the flux expression has been split into an active and a lagged part. Note also
that, in all cases, at least one of the gradient terms in the lagged part will be zero (because
vs and either yp or yp will be the same).

The two discretization schemes described by Eqs. (5) and (8) are identical when the
vectors § and 71 are aligned, corresponding to the case of Cartesian cells with no relative
refinement. When these vectors are not aligned, however, the magnitude of the active part
of the scheme of Zwart et al. is always less than that of the auxiliary node method. This can
be shown by taking the ratio of the active parts of the two schemes,

F{! B 1 1 ©
F;ﬂ T+ (sy/s0)? 1 +tan?6’

active

where 6 is the angle between § and 7.
Based on the numerical experiments reported in the next sections, we came to the fol-
lowing conclusions on the relative suitability of the two schemes for Cartesian meshes.
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Both schemes gave similar results when the underlying time advancement was semiim-
plicit and approximate factorization was used to directly advance the velocity field (see
later section). When a fully implicit approach was used and the velocity field was advanced
using an iterative technique, converged solutions on adapted Cartesian meshes could only
be achieved using the second auxiliary node flux discretization. The larger implicit part of
the auxiliary-node method seems critical for numerical stability on highly adapted Cartesian
meshes.

3.2. Convective Flux Discretization

While not specifically considered in this paper, one potential application of the present
method is to the direct numerical simulation and large eddy simulation of turbulent flows.
It is well known that even higher order upwind discretizations of the convective terms can
introduce numerical dissipation into the flow solution, particularly at the smallest resolved
scales. While the stabilizing effect of this dissipation can be beneficial for the smoothly
varying velocity fields of laminar or Reynolds-averaged Navier—Stokes simulations, it can
significantly degrade the accuracy of unsteady turbulent flow simulations.

With this future application in mind, the present method uses a symmetric (“‘central-
difference”) discretization for the convective flux based on the auxiliary node technique
discussed in the previous section. First, define a linearly exact interpolation operator, which
can be applied to cell-centered data to get a face value. Considering the pair of east/west cell
neighbours and their shared face shown in Fig. 3, the interpolation operator is defined as

= ((xp—xp)po + (xo — x7)Pp)
b5 =
(xo —xp)
. (xf=xp) 0y =) 55 o + o = X))y =y 1,
(xo —xp)

; (10)

where ¢ is any cell-centred quantity. Note that this interpolation operator has also been
divided into active and lagged parts. A similar interpolation operator can be defined for
north/south faces. Using this operator, a second-order linearly exact approximation for the
convective flux of x-momentum through face f is then

Fé(u,U) = UsAyity, (11)

where U s is the mass-conserving face-normal velocity, calculated using the Rhie and Chow-
type interpolation described in the following section.

3.3. Overall Numerical Method

With the flux discretizations described, we now summarize the overall numerical method.
Two separate approaches are considered. In addition to the fully implicit linearized dis-
cretization of Kim and Choi, we consider a semiimplicit approach similar to that of Zang
et al. [16], where the active part of the viscous terms is treated implicitly, and the con-
vective terms and lagged part of the viscous terms are treated explicitly using two-level
Adams—Bashforth. Although this semiimplicit approach has the disadvantage of introduc-
ing a numerical stability limit on the computational time step, there are several advantages
that may offset this. (1) The explicit treatment of the lagged terms means that the gradients at
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the cell centroids, which come into these terms, are calculated once at the start of each time
step, rather than throughout the iterative process. (2) The semiimplicit approach allows the
use of the approximate factorization technique to advance the velocity field. Approximate
factorization is computationally efficient and saves significantly on memory because it does
not require the storage of neighbour coefficients for the momentum equations in each cell.
Its application to Cartesian meshes with local refinement is presented in a later section.

3.3.1. Fully Implicit Approach

Although the fully implicit approach of the present work closely follows the method
described by Kim and Choi [8], it is repeated here for completeness.

After application of the fractional step method, the divergence theorem, and then dis-
cretizing the resulting fluxes using the schemes defined previously, the following equations
must be solved to calculate the velocity and pressure at the next time level, u” ! and p"+!,

i
8it;

At

== PmA=Y Fi(u,U") = > Fi(ul), (12)

1 cran 1 clin ! N
V01+§;(Ff(5ui,U )+ Fy(uj, 8ijn;)) +§;F}1(5”i)

f f f
At __
el = — A, 13
uf =y = oo ;p n (13)
Ut =uin;, (14)
ap"t! 1
A= — U*A, 15
= ox At Z (15
f f
At —_
u;ﬁ-l _ I/L;k —_ _= anrlnl,A, (16)
Vol
f
apn-H

U —U* = — At

o, 0 a7
where 6it; = ii; — uj, At is the computational time step, and Vol is the cell volume. In all
equations, summation is implied over repeated indices. The components of the pressure
gradient required by Eqgs. (15) and (17) are approximated using the same “auxiliary node”
technique developed for the viscous flux approximation.

In the present work, the sparse system resulting from Eq. (12) was solved iteratively using
coupled Gauss—Seidel iteration. After every iteration, the required gradients involved in the
lagged terms were updated. The stiffness was not found to be excessive, reducing the residual
by six orders of magnitude in 10 to 15 iterations without the use of multigrid or more complex
solvers, even for the largest problems considered. For the Poisson system of Eq. (15),
multigrid was found to significantly reduce the computation time, particularly for the largest
problems considered. Boundary conditions were handled as described by Kim and Choi.

3.3.2. Semi-implicit Approach

To remove the implicit coupling between velocity components and allow the application
of approximate factorization to advance the velocity field, a semi-implicit approach was
also considered. Applying second-order Adams—Bashforth to the convective terms and the
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lagged part of the viscous terms, Eq. (12) for the velocity increment, du;, becomes

(Sﬁi 1 L Active (o o
Vol + 5 Ef FEA™ (8iy)
ctive 3 ¢ ]
=- Ef pniA — gf FEA™e () — E( Ef Fe(ul, U") + zf: F;Lagged(u?)>

1 c(, n— n— , e n—
+§<zf:Ff("‘i LU 1)+;F}’“’g”(ui 1))- (18)

The remainder of the equations are identical to those described by Eqgs. (13) through (17).

As discussed previously, this semi-implicit approach has the disadvantage of introducing
a Courant—Freidrichs—Lewy limit on numerical time step of the form CFL = max(|u;|At/
Ax;) ~ 1. On Cartesian meshes with highly refined cells, this can become excessively
limiting. On the other hand, the solution of Eq. (18) can be significantly less costly than
solving Eq. (12) in terms of both memory and computation. For the overall algorithm
(including multigrid solution of the pressure equation, which is the same in both cases),
the semi-implicit approach was found to be about three times as fast per time step when
compared to the fully implicit approach. For relatively small two-dimensional problems,
the increased memory requirement of the fully implicit approach was not an issue, although
it may become an important consideration for large, three-dimensional problems.

3.4. Approximate Factorization

When the fractional step method is used to solve the unsteady Navier—Stokes equations
on structured grids, it is common to use approximate factorization to advance the veloc-
ity field [7]. Approximate factorization reduces the problem of inverting the large sparse
matrix associated with the discretized momentum equations to one of inverting a series of
tridiagonal matrices. These smaller one-dimensional systems can be directly inverted using
the tridiagonal matrix algorithm, resulting in a significant reduction in both computing cost
and memory requirement.

On a mesh of Cartesian cells with local refinement, the active part of the diffusive flux
discretization can be considered either an x- or y-discrete operator, depending on the ori-
entation of the associated face. Consequently, when the semi-implicit approach to time
advancement is used, the discretization equation in each cell can readily be written in a
form suitable for approximate factorization. Unfortunately the resulting one-dimensional
systems will not be tridiagonal because the local refinement and coarsening introduces mul-
tiple connections along any given direction. When the Cartesian cells are properly ordered,
however, these one-dimensional systems can be efficiently and directly inverted using a
Gaussian elimination technique. This technique is now presented in detail.

Figure 4 shows a typical “linkage” of Cartesian cells, considering just their mutual cou-
pling through the discrete x-operators. Any given cell is also a member of a second linkage
extending in the y-direction. The linkage represents the coupled one-dimensional system
that must be inverted after approximate factorization has been applied to the semi-implicit
equation for the velocity increment, Eq. (18). The total width (in the y-direction in this
case) of the linkage is determined by the maximum width of any cell in the linkage, and its
length (x-direction in this case) spans the entire domain.
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FIG. 4. A typical “linkage” of Cartesian cells, considering just their mutual coupling through the discrete
X-operators.

The method of Gaussian elimination is a two-phased approach for inverting a coupled
linear system of equations. In phase one, the first equation is used to eliminate the depen-
dence on the first unknown from all other equations. This is repeated for each unknown,
eventually producing an upper-triangular matrix. A second phase of back-substitution is
then performed to compute the solution. The method of Gaussian elimination is rarely ap-
plied to even medium-sized sparse systems because the upper-triangular matrix can quickly
become nearly full, requiring substantial memory and computation time and making the
solution prone to numerical error associated with compounded machine round-off.

When the coupled system is that resulting from a linkage of Cartesian cells, however, and
the cells are ordered according to width from narrowest to widest, Gaussian elimination can
very efficiently invert the resulting system. Because of the ordered connectivity of cells, the
expanding of the coefficient matrix after successive eliminations does not occur. For clarity,
Fig. 5 illustrates a portion of the Gaussian elimination process using the typical linkage of
cells introduced previously.

Finally we point out that, while necessary for the efficient implementation of approximate
factorization, this Gaussian elimination technique can also be used as a line-smoother for
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FIG.S. Illustration of the Gaussian elimination process using a typical “linkage” of Cartesian cells. All cells
in the linkage are sorted from smallest to largest width (Ay in this case). (a) The dependence on cell 1 is eliminated
from its neighbours, cells 9 and 2. Cell 9’s neighbour reference to cell 1 is changed to reference cell 2, and the
coefficients are modified appropriately. Similarly, cell 2’s neighbour reference to cell 1 is changed to reference
cell 9. (b) The dependence on cell 2 is eliminated from its current neighbours (cells 9 and 3). (c) Remaining
neighbour connectivity after the elimination of several more cells.
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the iterative multigrid solution of the pressure equation, and even the momentum equations
when solved iteratively.

3.5. Multigrid Solution of Pressure Poisson Equation

In the present method, the pressure Poisson equation is solved using additive correction
multigrid (ACM) [17]. The performance of ACM, however, can depend critically on the
cell agglomeration routine used to define the coarse meshes. As discussed by Raw [18],
optimal coarsening should be performed in the direction of greatest coefficient strength. Raw
goes on to develop a coarsening algorithm based on this principle. Because the algorithm
is developed for fully unstructured meshes, it requires ad hoc modifications to prevent
the coarse cells from becoming excessively irregular, or from having an excessively large
number of neighbours. That is, a certain degree of smoothness is desired in the coarse cells.

For the present case of Cartesian cell meshes with anisotropic local refinement, a natural
coarse mesh consists simply of coarser Cartesian cells. By requiring that the coarse cells at
all multigrid levels also be Cartesian, we avoid the problems associated with irregular coarse
cells. We also note that, for the solution of the pressure Poisson equation, the direction of
greatest coefficient strength can be interpreted geometrically as the coarsening direction
that most reduces cell anisotropy.

In the present work, the coarse Cartesian mesh is stored using the same unstructured
data format and cell indices introduced for the fine mesh. The coarse mesh is defined as
the largest set of nonoverlapping cells for which each coarse cell’s level indices [/, [;] are
less than (i.e., coarser) or equal to all the “target coarse cell indices” of their contained
fine cells. Here we have introduced capital letters to distinguish coarse cells from fine cells.
The “target coarse cell indices” for any fine cell are calculated using the following algorithm.

getTargetCoarseCelllndices
1. Determine the maximum (i.e., finest) refinement level of any neighbour
Limax =0, 1j max =0
for all cell neighbours ¢,
li,max = max(li,maxa ll}nb)
Ljmax = max(lj max, Ljnp)
end for
2. Set the target coarse cell’s x-indices l; and 1
if (; > l; max) AND (Ax < ¢Ay) AND (/; > 0)
L=L-1,1=i/2
else
l] = li, I =i
endif
3. Set the target coarse cell’s y-indices l; and J
if (I[; = I} max) AND (Ay < aAx) AND (I; > 0)
ly=1l-1j=j/2
else
lj = lj, J = ]
endif
end getTargetCoarseCelllndices

In the above algorithm, o > 1 is an adjustable parameter that prevents the definition of the
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FIG. 6. Fine mesh and multigrid coarse mesh levels determined by applying the coarsening strategy. (a) Fine
grid (823 cells). (b) Coarse grid level 1 (374 cells). (c) Coarse grid level 2 (143 cells). (d) Coarse grid level 3
(58 cells). (e) Coarse grid level 4 (21 cells). (f) Coarse grid level 5 (six cells).

coarse grid in a manner that increases the cell anisotropy excessively; « = 1.5 was used
throughout the present work.

Figure 6 shows a typical fine mesh and five multigrid coarse mesh levels determined by ap-
plying this coarsening strategy. These particular meshes are taken from the two-dimensional
lid-driven cavity flow problem, presented in Section 5. The average coarsening ratio is about
2.6 fine cells per coarse cell. This relatively low coarsening ratio increases the memory over-
head associated with the multigrid implementation, but gives good convergence results even
with relatively weak smoothers (e.g., point-iterative Gauss—Seidel).

3.6. Time-Accurate Interpolation

After any cell is refined or coarsened, it is necessary to interpolate the cell and face data to
the new data location(s). In the present implementation, a second-order interpolation of the
data is performed to any new locations after each refinement or coarsening. This corresponds
to averaging the data between two cells that are coarsened into one, or extrapolating the
data using the cell gradient when one cell is refined into two. The face-normal mass-
conserving velocities are handled similarly. Although higher order derivatives are available,
the interpolation is limited to second order because of desirable conservation properties:
namely that the new face-based velocities will still satisfy discrete conservation of mass, and
the new cell-centered velocities will discretely conserve the local and global momentum.
For example, the integrated #-momentum,

M, = / udV = ZuV (19)
%4
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remains constant over any consistent volume V before and after refinement or coarsen-
ing. These conservation properties ensure that neither mass nor momentum is created or
destroyed in the adaptation process, thus allowing the time-accurate advancement of the
solution.

We note that, when the two-level semi-implicit scheme is used, data from both the
current and previous time levels are interpolated as described above. This ensures the
spatial correspondence of the data at both time levels.

4. GRID ADAPTATION CRITERION

The goal of this section is to develop expressions for the target anisotropic cell dimensions,
AXigrger and AYiarger. 1deally, these expressions should be simple, explicit functions of the
variables and/or derivatives at the cell centroids,

u| 9%u
A-xtarget = f(ucv Ve, a ca W C’ e ) 3 (20)
A u| d%u @1
arget — Uy Vey 7| v T3] se0 )
Viarger = 8 ax |, 0x2|,

The efficient adaptation of the mesh can then by accomplished by simply comparing the
actual cell dimensions to the target dimensions calculated using Egs. (20) and (21), and
then refining or coarsening appropriately.

Recalling the three ingredients of any adaptive refinement scheme [9],

1. an error indicator,
2. an optimal mesh criterion, and
3. an algorithm to refine and coarsen the mesh,

this section develops the first two (the third has already been described in Section 2) to
derive analytic expressions for the optimal local anisotropic cell dimensions.

4.1. Error Indicator

When the finite volume method is applied to the Navier—Stokes equations, integrals of
the velocity over the Cartesian control volume 2 are approximated by taking the value at
the centroid and multiplying by the cell volume. For example, for the u-velocity

/ udQ =u.AxAy +¢,, (22)
Q

where u. is the value at the cell centroid (x., y.), Ax and Ay are the Cartesian cell dimen-
sions, and ¢, is the error associated with the approximation. If u is assumed to be smoothly
varying throughout the cell, the error can be estimated by integrating the two-dimensional
Taylor series expansion of u about the centroid over the Cartesian control volume. Retaining
only the lowest order terms, the error expression becomes

Ax3Ay 3%u  AxAy’ 8%u
Ey = a0 PYCR
24 9x? 24 9y?

(23)

2 2 .
where % and 27’3 are evaluated at the cell centroid.
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4.2. Optimal Mesh Criterion

We consider the optimal mesh to be the smallest mesh (i.e., mesh with the fewest cells)
for which the error associated with each cell satisfies

&2 < 2, (24)

where ¢ is some measure of the error (squared to ensure positivity), and c is a specified error
tolerance. In the present work, Eq. (23) is used as the basis for the error expression. More
specifically, we define the optimal mesh as the smallest mesh that satisfies the following
criteria:

e =¢2 462 <. (25)

Substituting Eq. (23) and a similar expression for ¢, into Eq. (25) yields the following
relationship:

Ax3Ay 8%u n AxAy3 3%u 2 Ax3Ay 3% n AxAy? 3%
24 9x2 24 9y? 24 9x2 24 9y?

2
) < (26)

Following Simpson [19], this global optimization problem is equivalent to a local max-
imization problem: maximize the cell area subject to the constraint defined by Eq. (26).
Stated differently, the optimal combination of (Ax, Ay) that locally satisfies Eq. (26) is
simply the combination for which the cell area (A = AxAy) is maximal.

Using Eq. (26) and the maximal area concept, it is possible to develop expressions for the
target Cartesian cell dimensions based on the second velocity derivatives at the cell centroid.
Unfortunately, the resulting expressions are cumbersome, violating our requirement for
simple, explicit expressions. We now make some simplifications to Eq. (26) that produce
simpler explicit expressions for the target cell dimensions, but compromise our definition
of optimality slightly.

First, note that Eq. (26) can be rewritten as

Ax3Ay AxAy? 2 2
24 Fxx+ 24 Fyy +V§C, (27)

where F, and F,, are the magnitudes of the cell centroid derivatives, defined as
2u\? v\ 2
Fox = ) P 28
\/(8)62) +<3x2> 28)
2u\? 320\
fmy(5) + () .

_ Ax*Ay* [ 8%u 3%u L 0%v 3%v
VZ7088 \ox2oy? T axzayr W)

and y is the expression

(30)
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By analyzing Eq. (30), it is straightforward to prove that y < 0 for all possible combinations
of second derivatives. Consequently, we introduce the modified criterion

Ax3Ay AxAy? 2 )
24 Fyox + 2 Fyy =c, (31

or, taking the square root of both sides,

Ax3Ay AxAy?
Fo+ 2220 p <c 32
g Ty e =c (32)

Because y < 0, any mesh that satisfies Eq. (32) in every cell is guaranteed to satisfy Eq. (26)
in every cell. Although the smallest mesh that satisfies Eq. (32) will not necessarily corre-
spond to the optimal mesh as defined earlier, at least the error is guaranteed to be below
the specified error tolerance c. Further, the expressions for Ax and Ay turn out to be much
simpler. The cell dimensions that maximize the area, A = Ax Ay, subject to the constraint
of Eq. (32) are

A ( L4dc Fyy ) % (33)
Xiarget = | —Fp3 ’
) FZ
1
A ( 144" P ) 8 (34)
Yiarget = | — (77— .
F5y

In Egs. (33) and (34), the subscript “target” has been introduced as a reminder that the
simplifications involved in these expressions do not necessarily result in an optimal mesh.
To reiterate, however, the error as defined in Eq. (23) will still be limited by the user-specified
error tolerance c.

4.3. Three-Dimensional Expressions

In three dimensions, the expression corresponding to the error criteria of Eq. (32) is

Ax3AyAzF AxAy3AzF n AxAyAZ?
24 o 24 Y 24

F.=<c (35)

where F\,, Fy,, and F,; are the magnitudes of the second derivatives calculated at the cell
centroids,

2

2u\?  [32w\? /9w
Fo, =4/ == = °
, ¢(ax2) (Y (2e), 36
921\ 2 920\ 2 92w\ 2
Fo, =4/ — - 27, 37
> (3y2> +<3y2) +(8y2) GD

2u\? 320\ 2w >
= (3z2> <8zz) (312> %)
The target cell dimensions maximize the cell volume, V = AxAyAz, subject to the
constraint defined by Eq. (35). This problem is most easily solved using the method of
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Lagrange multipliers [20], yielding the target mesh dimensions

64c?Fyy F,, \ 10
AXtarget = F;lx ) (39)
642 Fy Fry \ T
Aytarget = ( = “> s (40)
Fi
1
64c?F o Fyy \
AZtarget = (74W> . 41
Fzz

5. VALIDATION

To validate the grid adaptation criteria along with the overall Cartesian grid method,
some results from the following benchmark flow problems are now presented: the 2D and
3D lid-driven cavity flows and the flow around a circular cylinder. In this latter case, an
immersed boundary method is used to handle the embedded cylinder boundary.

5.1. 2D Lid-Driven Cavity

The two-dimensional lid-driven cavity flow is a simple viscous incompressible flow that
has many features suitable for testing the performance of an anisotropic mesh adapta-
tion strategy, including primary and secondary vortices, wall boundary layers, and flow
separation and reattachment. The flow was studied numerically by Ghia et al. [21], who
reported accurate solutions to the steady flow solution over a range of Reynolds numbers
(Re = UL /v, where U is the constant lid velocity and L the cavity dimension).

To test the adaptation strategy of the present contribution, the cavity flow problem was
solved on a variety of Cartesian meshes, both with and without adaptation. The flow was
started from rest on a uniform Cartesian mesh and integrated ahead in time until a steady
solution was reached. For the cases involving adaptation, following each time step the local
target cell dimensions were calculated and cells refined or coarsened appropriately. A simple
feedback mechanism was used to adjust the user-specified error tolerance ¢ throughout the
calculation to keep the number of cells approximately constant.

Figure 7 qualitatively illustrates the effect of the anisotropic adaptation on the mesh by
comparing a uniform mesh to an adapted mesh with approximately the same number of cells.

=hi)

FIG.7. Streamlines, uniform mesh, and adapted mesh for the steady-state solution to the 2D lid-driven cavity
flow at Reynolds number Re = 400. Both meshes shown have approximately the same number of cells, N &~ 1000.
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FIG.8. Rms solution error as defined by Eq. (42) against average cell dimension for the 2D lid-driven cavity
flow problem at Reynolds number Re = 400: uniform Cartesian mesh; --- adapted Cartesian mesh.

Plots comparing centerline velocities are not given because they are nearly identical to the
results of Ghia et al., particularly on the finer meshes considered. To quantify the difference
in solution error between the various meshes, the following rms velocity error is defined,

- \/Z 1 (xi, yi) SuGhia(xim)’i))z’ @2)

where (x;, y;) are the 15 locations along the vertical centerline reported by Ghia et al.
(excluding the boundary results at y = 0 and y = 1), u are the steady velocity values from
the present calculations interpolated to the Ghia points, and ugy;, are the velocity values
reported by Ghia et al. from their 129 x 129 grid [21]. Figure 8 compares this rms error on
the uniform and adapted meshes plotted against the average cell dimension, where N is the
total number of cells.

Throughout the entire range of problem sizes investigated, the solution on the adapted
mesh is significantly more accurate than the solution on the unadapted mesh. For example,
at a problem size of approximately N = 1000 cells, mesh adaptation results in a reduction
in the rms solution error by a factor of about 5. In addition, the rate of error reduction
(i.e., slope) for the adapted case is approximately 2.4, indicating a slight superconvergence
as might be expected when (some of) the truncation errors associated with the present
second-order scheme are minimized.

5.2. 3D Lid-Driven Cavity

The 3D lid-driven cavity involves the flow in a cubical enclosure with lid moving at a
constant velocity U = 1. The presence of the two additional walls significantly complicates
the flow by introducing secondary mean flows due to the interaction of the rotating fluid and
the no-slip condition at these walls. A 3D version of the present adaptive Cartesian method
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FIG. 9. Anisotropic Cartesian mesh shown on three orthogonal planes through the center of the 3D lid-driven
cavity at Re = UL /v = 400. The arrow indicates the location and direction of the driven lid.

was used to solve this problem. As with the 2D cavity, the flow was started from rest and
integrated ahead in time until a steady solution was reached. Adaptation was performed
after every time step.

Figure 9 attempts to illustrate the 3D anisotropic mesh by viewing three orthogonal
planes passing through the center of the cavity. Note the high degree of anisotropy in the
cells near the driven lid. Figure 10 shows the velocity vectors on the plane of symmetry.
The significant reduction in the total number of cells required to achieve a given level of
accuracy is illustrated by Fig. 11, which compares the calculated velocity profiles along the
vertical centerline from four different simulations. When compared to the grid-independent
result, the adapted Cartesian grid solution with about 2000 cells is slightly superior to the
uniform grid solution with over 30,000 cells.

i

/17//

bl

RN

/ T

1IAIRTAIARA
JI/I/I[!I\

FIG.10. Anisotropic Cartesian mesh and velocity vectors on the center plane of symmetry of the 3D lid-driven
cavity at Re = 400.
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FIG. 11. Comparison of calculated u-velocity along the vertical centerline of the 3D lid-driven cavity at
Re = 400: adapted anisotropic Cartesian grid (2000 cells); --- uniform grid (16° = 4096 cells); —- —
uniform grid (32° = 32768 cells); @ grid-independent result.

5.3. Flow Around a Circular Cylinder

Both of the previous flows have involved simple Cartesian geometries and viscous bound-
ary layers aligned with the principal coordinate directions. In this last case considered, a
body force technique is used to embed a complex boundary in the Cartesian grid and simu-
late the time-dependent flow around a circular cylinder. Above a critical Reynolds number
of about Re = Uy, D /v > 35, the flow around a circular cylinder is unsteady and periodic,
producing the well-known von Karmann vortex street. The flow has been extensively stud-
ied both experimentally and numerically, and thus serves as a suitable benchmark unsteady
incompressible flow to test the time-accuracy of the transient mesh adaptation.

The concept of adding body forces to the momentum equations to simulate the pres-
ence of boundaries dates back to the pioneering work of Peskin, who investigated the
blood flow in a beating heart [22, 23]. His method has come to be known as the immersed
boundary method (IMBM). IMBM does not require the correspondence of grid lines with
the boundaries, thus permitting the use of structured Cartesian meshes to simulate flows
involving complex and moving boundaries. Recently, Roma et al. [24] combined the im-
mersed boundary method with an embedded grid technique to produce a time-adaptive
method for moving boundary problems, with promising two-dimensional results. The op-
timal selection of embedded nonoverlapping grids, however, remains a complex problem.
For example, the two-dimensional algorithm used by Roma et al. “combines elements of
both computer vision and pattern recognition theory” [24], and no comment is made on
its suitability in three dimensions. Lai and Peskin recently applied the immersed boundary
method to solve the cylinder flow problem, although only uniform Cartesian grids were
considered [25].

For the present cylinder flow simulation, we use a simplified form of IMBM suitable for
flows where the coupling between moving boundaries and the flow is only one-way (i.e., the
boundary is known as a function of space and time) [26, 27]. In practice, this technique is
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FIG.12. (a) Geometry and boundary conditions for the flow around a circular cylinder. (b) Complete view of
a typical adapted Cartesian mesh.

implemented by simply linearly interpolating the velocity field in the fluid control volumes
immediately adjacent to the immersed boundary.

Figure 12a shows the problem geometry and boundary conditions. To facilitate a com-
parison of results, the geometry is identical to that reported by Kim and Choi [8]. We note
that no modification has been made to the mesh adaptation scheme to preferentially refine
the mesh near the cylinder boundaries. Refinement near the cylinder boundaries occurs
naturally because of the effect of the cylinder on the flow solution. The flow was started
impulsively from a zero velocity field. Above the critical Reynolds number, vortex shedding
was found to initiate spontaneously and did not require the perturbation of the flow field.
This was presumably due to slight asymmetries in the adapted mesh, which can occur from
time to time, even when the flow is theoretically symmetric. The flow was computed until the
frequency of vortex shedding remained constant. Three Reynolds numbers were investi-
gated, Re = 80, 100, and 120. In all cases, the fully implicit discretization of convective
terms proposed by Kim and Choi was used, and the time step was adjusted to maintain
CFL = max(u; At/Ax;) ~ 1.

Figure 12b shows a complete view of a typical adapted Cartesian mesh. In this case,
the mesh has approximately 12,000 cells, corresponding to the adaptation criterion ¢ =
5 x 1073, Note that the mesh adaptation scheme has produced a few highly anisotropic
cells at the north and south boundaries. This is a result of the Dirichlet boundary condition
used at these locations (u = Uy, v = 0), which produces a slight shear layer. Refinement
at these locations could be avoided by either modifying this boundary condition, or making
the adaptation criterion ¢ of Egs. (33) and (34) a function of space, rather than simply a
global constant.

Figure 13 shows the Cartesian mesh and corresponding contours of pressure around the
cylinder and in the wake region at one instant in time. Although the mesh adaptation is
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FIG.13. Detail of the Cartesian mesh and corresponding contours of pressure in the wake region of the flow
around a circular cylinder at Re = 100 (contour spacing Ap = 0.05).

anisotropic, only the boundary layers near the cylinder and flow in the very near wake
contain significant cell anisotropy at these relatively low Reynolds numbers (see Fig. 14).

Figure 15 shows the calculated nondimensional frequency of vortex shedding, or Strouhal
number, as a function of Reynolds number. The results are in excellent agreement with the
calculation of Kim and Choi [8] and the correlation of Williamson [28].

\

FIG. 14. Detail of the Cartesian mesh near the cylinder for Re = 100: — - — immersed boundary.
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FIG. 15. Variation of Strouhal number with Reynolds number: B present study; O Kim and Choi [8]; —- —
correlation of Williamson [28].

To demonstrate the approach to mesh independence, Fig. 16 plots the error in calculated
Strouhal number (relative to the correlation of Williamson) for all grid sizes and Reynolds
numbers investigated. This error is plotted against the nominal Cartesian cell dimension,
defined in terms of the total number of cells, N, and the domain dimensions L, and L,.
Although somewhat scattered, the rate of error reduction appears to be consistently steeper
than second order.
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FIG. 16. Strouhal number error relative to the correlation of Williamson St,, [28] vs nominal Cartesian cell
dimension (N = total number of cells, L,, L, = domain dimensions): l Re = 80; A Re = 100; O Re = 120;
slope 2; --- slope 3; — - — slope 4.
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6. SUMMARY

A Cartesian mesh method with local anisotropic refinement and coarsening has been
developed for simulating time-dependent incompressible flows. Algorithms have been de-
scribed for the time-accurate transient anisotropic refinement and coarsening of the cells.
We have shown how the method of approximate factorization, common to structured grid
methods, can be applied to advance the velocity field during the solution of each time step.
An efficient coarse grid selection algorithm has been described for the multigrid solution
of the pressure Poisson equation. Simple analytic expressions for the optimal anisotropic
mesh dimensions have been derived based on limiting the local velocity interpolation error.
Finally, the overall method has been validated by solving three benchmark flows, all with
excellent results.
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